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A LINEAR THEORY OF DOUBLE-LAYER RESIN-METAL SHELLS* 

N.N. ROGACHEVA 

An asymptotic method is used to derive two-dimensional equations of 
double-layer shells of arbitrary form. The problem is split into two, 
simpler problems. A solution for a weak layer of slightly compressible 
elastic material,. such as an elastomer, is obtained in general form and 
the solution for a two-layer shell reduces, as a result, to solving the 
problem of a stiff layer under a load which depends on the stress-strain 
state (SDS) of the weak layer. It is shown that in the case of a weak 
layer the laws of variation of the quantities required across the 
thickness may deviate significantly, depending on the dynamic properties 
of the load, from the laws accepted in the classical theory of shells. 

The papers dealing with the problem in question concern themselves, as a rule, with the 
analysis of the equations of state /l, 2/, or with the study of SDS under kinematic-type 
conditions on the face surfaces of the shell, making certain assumptions /3[. 

1. We shall assume, to fix our ideas, that the outer layer of the shell, of thickness 

W, is composed of an incompressible elastic elastomer (we shall call it the soft layer), 
and an inner, metal layer of thickness 2h, (we shall call it the stiff layer). The face 
surfaces of the two-layer shell are subjected to an arbitrary, static or dynamic load. 

We will write the initial conditions for the elastomer layer in three-orthogonal coor- 
dinates cl, %r o3 where cl) aa are the lines of curvature of the middle surface of the 
layer and cza is a line orthogonal to them 

Here (1.1) is the equation of state, (1.2) is the condition of incompressibility, (1.3) 
are the equations of motion, and 
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(1.4) 

(11 
ai=l+a, 

R(l) ’ i#j=1,2 

In formulas (l.l)-(1.4) oi, $7 cis, aa aret the components of the symmetric stress tensor, 

Q, % are the components of the displacement vector, Ai are the coefficients of the first 
quadratic form of the middle surface, Ri are the radii of curvature of the coordinate lines 
CZi and u is the Lame coefficient. The superscripts within the parenthesis indicate that 
the parameter in question refers to the first (elastomer) or second (metal) layer. Every 
equation with indices i, j combines within it two equations, the first of which is obtained 
by putting i = 1, j = 2, and the second by putting i = 2, j = 1 in it. 

Let us write the equations of state for the metal layer 

E & = up’ - Y (I$’ + I$‘), 
3 

(1.5) 

The remaining relations for the metal layer are identical with relations (1.3)-(1.4) in 
which the superscript (1) should be replaced by (2). 

We specify the components of the surface load on the upper face surface r1 and lower face 
surface rz of a two-layer shell as follows: 

UP) Ir, = q3+, UP lr, = 4i3+ 0.6) 
up) Ir, = - ps-, up jr* = - qis- 

$7) 

and the following conditions must hold on the contact surface r between the two layers: 

2. Let us consider a static system. We introduce the notation 

2plE = af’, pJpa = al* 
(2.1) 

Here n is a small parameter equal to the ratio of the half-thickness of the shell to 
its characteristic dimension R. We assume that the thicknesses of both layers are of the same 
order of magnitude. 

Let us stretch the scale asymptotically along the coordinate lines 

c<(k) = R&(k), c,(k) = Rndc(k) (i, k = 1, 2) (2.2) 

Here t, which is the index of variability along the coordinates ai, ctQ, is chosen so 
that the differentiation with respect to &, 5 does not lead to any significant increases or 
decreases in the values of the functions required. 

We shall assume that the quantity d is equal to unity, and we shall find it of use in 
what follows. 

The following asymptotic representation of the quantities required leads to a non-con- 
tradictory approximate solution of the problem. This enables us to determine the SDS of each 
layer, taking the boundary conditions into account, and enables us to set up an iteration 
process in order to increase the accuracy of the solution obtained in the initial approximation 
for the elastomer layer 
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and the metal layer /4/ 

(2.3) 

0, 
C= 

t < ‘ia 1 2d - 2t, a-2d+2t-l+c>0 
--d+2t, t>v, e= a--1$-c, G.-22d+2t_- i-c<0 

d-c<ee,<2d-2t 

The powers of rl accompanying the dimensionless stresses and displacements required are 
chosen so as to make the quantities marked with an asterisk of the same order of magnitude. 

Formulas (2.3) and (2.4) correspond to the SDS generated~ by the surface load which has 
the following asymptotic representation: 

i- 43* = rl-*(f&~)~ si;gis* = V"(f&*Q (2.5) 

Here we assume that to every separate component of the surface load there corresponds an 
SDS with the asymptotic representations (2.31, (2.41, i.e. a tangential surface load O(Q*) 
creates an SDS of the same order of the normal loading o(n-'). 

Let us rewrite, taking into account the asymptotic formulas (2.3)-(2.51, the conditions 
on the face surfaces of the shell and at the contact surface between the layers: 

Takinq into account the asymptotic formula (2.31 and the change of variables (2.2), we 
obtain Eqs.(l.l)-(1.4) in the form 

,,lad-S-e (e$;) + 

where 



Integrating Eqs.(2.7) in :, we obtain the following expansions: 
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(2.9) 

Some of the above formulas are followed by expressions in parenthesis. These contain 
quantities whose expansions have exactly the same form. 

We shall construct an approximate theory of two-layer shells, to within quantities of 
the order of E 

e = 0 (nl-") (2.10) 

Substituting expansions (2.9) into (2.7) and (2.8) and neglecting terms of the order of 
smallness of up to (2.10) we obtain, after equating to zero the coefficients of like powers 
of 5, the following relations: 

(2.11) 

The boundary conditions will be written with an accuracy of up to (2.10) thus: 

(2.12) 

Returning from the asymptotic representations of the quantities required, introduced by 
formulas (2.3) and (2.4), to the dimensional stresses, strains and displacements, we obtain 
the following equation for the required quantities of the first layer (here, unlike in the 
quantities reduced to dimensionless form, we omit the superscript 1 within the parenthesis 
and the asterisks): 

(2.13) 

vs,o = b,,, - h,2v,., - w, P, 0 = u3,o - 2w,, 

where ui, 10 are the components of displacement vector of the middle surface of metal layer. 
Formulas (2.13) determine completely all the quantities required in terms of the surface load 
applied to the face surface of the elastomer layer, and in terms of the displacement of the 
contact surface between the layers. From formulas (2.13) we see that the following stresses 
act in the contact surface: 

(Ji3 Ir = Qil+.r usIr=gs++2h,(~~+~~+k,gas++k,q~,+) (2.14) 

This means that the tangential component of the load is transmitted through the layer of 
elastomer to the metal layer without any change, while the normal component changes the more, 
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the larger the variability of the load over the coordinates. If the variability coefficient 
is equal to zero, we can assume, within the approximation adopted here, that the normal load 
at the contact surface is the same as that at the surface of the elastomer (131~ = q3'. When 
the variability coefficient t increases, the contribution of the term which takes into account 
the correction to the surface load [the term within the parenthesis in I2.14ff also increases 
and becomes, when t = 'i, , commensurate with the principal term q3'. We note that for the 
stress states with large variability, the value of the normal stresses at the contact surface 
depends essentially on the tangential load acting on the face surface of the soft layer. 

Thus the static computation of a two-layer, resin-metal shell, can be carried out in 
two stages. The first stage involves computing a single layer metal shell using classical 
thearp, with the following surface load: 

xi = IsiS+i-%-) 

After solving the first problem, we compute the elastomer layer using direct actions 
according to the formulas t2.13), in the order in which the formulas have been written. 

The results obtained can be generalized ta the case of a slightly compressible elastomer* 
To da this we must introduce an asymptotic estimate of the compressibility of the material 
(1 - 24 = 9” (Y is Poisson's ratio), in which case we must replace the equation of incom- 
pressibility by 

The last formula 
q-l +Zt+c)Qwith 

shows that all previous formulas remain valid for the power indices s = 
an accuracy of up to the ax&r of 0 ($ + +-Y - _If s =o, then 

asymptotic analysis shows that the formulas for determining %,1* %2 in (2.13) are replaced 

by 

1--v 1 1-h 1 -- 
%.x= r+v + P rO-e~ro-e2r0r Zi?,,, = - - l+y + P,l--e:,~--e,,I 

and the order in which the quantities required are determined using algebraic actions, will 
also change. The asymptotic expression q2.3) can be used only for non-negative values of s. 
We shall confine ourselves to the compressibility which satisfies the above requirement, and 
this will correspond to the properties of real elastomers. 

3. Let us assume that the surface load (1.6), t1.7) varies sinusoidally as @r where 
% is the time and 'o is the angular frequency of the oscillation. We introduce a dimension- 
fess frequency parameter for the stiff layer 

p,&PiE = V$% (3.1) 
Let us write the dimensianless frequency parameter for the soft layer in terms of h, 

taking (2.1) into account 
pl~2RZ/(2/4 =3 +-=+bh (3.2) 

Substituting the asymptotic expressions (3.1) and (3.2) into the equations of netion we 
can show that when z=2r+2--&+B>O, we have, with an accuracy of order O(@-e -!- $), a 
quasistatic problem and the approximate formulas obtained for the static problem will remain 
valid. If z<% then we have a dynamic problem, and in this connection we must take into 
account the inertial terms in the equations of equilibrium. Moreover, when the 4 are negative, 
dynamic integrals Qf the quantities required will appear, in which the variability of y over 
the thickness coosdinate will be greater than unity: 

y = (a - b - 2412 

In this case we shall have the asymptotic representation (2.2)-(2.41 and three-dimensional 
equations for the soft layer will be written, taking the asymptotic representations into 
account, in the form (2.71, j2.8)+ 

Let us write, with an accuracy to quantities of the order of 0 (+J-'), the approximate 
equations for determining the unknown quantities of the soft layer 

(3.3) 
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P = 03 

Sgs.(3.3) can be intearated in aeneral form. and the arbitrarv constants of intearation _ 
can be found from the 
ferential equation of 

conditions on the face and contact surfaces. The resulting _ dif- 
the system (3.3) will have the form 

and from this we have 
ui = Cl sin ka, + C, cos ka,, ai, = pk (C, cos ka8 - C, sin ku,) 

’ k = ~p&/P 

From the condition ui lr, = Ui, 033 Ir, = 913+ we obtain 

2C1 = (U&n &I - (pk)-'giac cos ?&)/cos 2kk,, 2C, = (U~COS kk, + 
(pk)-iqiaC sin W,)/cos 2khl 

Note that in the case of a linearly elastic elastomer we have thickness resonances with 
frequency 

0, = 'I&,-'dlLp*-t ('1% -t- n), n =0,&i, +2,. . . 

The remaining unknown quantities can be found from formulas (3.3) taking conditions 
(1.61, (1.8) into account. 

The solution of the rigid layer reduces, just as in the static case, to calculating a 
single-layer shell acted upon by the load 

Xi = (Ui8(1) Ir + Q13-), 2 = (Us(') Ir + ga-) 

where Diar (ra are expressed, as a result of solving the problem formulated above, in terms 
of the displacement of the middle surface of the rigid layer and surface load gis', q9+. 

In order to take into account the limited compressibility, it is sufficient to change 
one of the Eqs.(3.3): 

1-2v 1 
-=---e,--e,+--P 
2 f+v 2P 
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